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An expression for cylindrically averaged intensity diffracted by a partially

occupied helix (i.e. by a set of identical molecules bound to some, but not all,

points of a discrete helix) is derived. The result is compared with previous

studies and its application to muscle diffraction is discussed.

1. Introduction

Helical diffraction theory was developed in the ®fties (Cochran et al.,

1952; Franklin & Klug, 1955; Klug et al., 1958). Here we consider

diffraction on a partially occupied helix (i.e. a set of identical groups

of atoms that occupy some but not all points of a discrete helix).

Structures of this kind arise from binding of identical large molecules

to some but not all helix repeat units formed by smaller molecules.

For example, in muscle, globular myosin heads bind to actin mono-

mers on the thin ®laments and partially occupy actin helix (Fig. 1a).

2. Structure, its transform and diffracted intensity

It is assumed that possible binding sites form a ut helix (i.e. there are u

helical points in t turns) with an axial distance d between the adjacent

points. Some of the binding sites are occupied by identical molecules

and, in the general case, the whole structure does not have any helix

symmetry, although it has a period c, which is assumed to be a

multiple of ud: c � dU, where U � ru, T � rt, and U, T and r are

integers. In addition, c � rc0, where c0 � ud is the repeat distance of

the underlying helix. The repeating binding pattern can be described

by a set of U `all or nothing' parameters, �s:

�s �
(

1 if the sth binding site is occupied

by a bound molecule;
0 if the sth site is free:

�1�

As the structure is periodic, �s � �s+U. If K is the number of the

occupied binding sites in a period c, then the average helix occupancy

q is q � K=U and
PUÿ1

s�0 �s �
PUÿ1

s�0 �
2
s � K.

Let the z axis of a cylindrical system of coordinates (r, ', z) in real

space coincide with the helix axis. If rj, 'j, zj are the coordinates of the

jth atom (j � 1, 2, . . . , M) of the molecule bound to the zeroth

binding site on the helix and fj is the scattering factor of this atom, the

coordinates of the same jth atom in the molecule bound to the sth site

are rj, 'j � 2�sT=U and zj � sd, respectively. The transform of the

whole structure is (Klug et al., 1958; Vainstein, 1963)

F �
X

l

Fl�R;	���Z ÿ l=c�;

Fl �
1

U

XUÿ1

s�0

Xn�1
n�ÿ1

�sGnl�R� exp�in	� exp�2�is�l ÿ nT�=U�;
�2�

where

Gnl�R� �
PM
j�1

fjJn�2�Rrj� expfi�n��=2ÿ 'j� � 2�lzj=c�g �3�

are the Fourier±Bessel structure factors; R, 	, Z are cylindrical

coordinates in reciprocal space and Jn is the nth-order Bessel function

of the ®rst kind. Transform (2) is normalized for the total number U

of available binding sites in a period c.

The cylindrically averaged intensity, Il(R), on the lth layer line for

transform (2) can be calculated straightforwardly (Vainstein, 1963;

Millane, 1991):

Il�R� �
1

U2

X1
n�ÿ1

XUÿ1

s;k

�s�kjGnl�R�j2 exp�2�i�sÿ k��l ÿ nT�=U�

�
X1

n�ÿ1
jGnl�R�j2blÿnT ; �4�

where

bp �
1

U2

XUÿ1

s;k�0

�s�k exp�2�i�sÿ k�p=U�: �5�

Expression (4) can be rewritten as

Il�R� �
P

n

P
s

jGnl�R�j2bs; �6�

where n and s satisfy the selection rule

l � nT �mU � s �7�
and m is any integer. This selection rule was obtained by Holmes et al.

(1980). Expressions (4), or (6) and (7), provide a general formula for

the cylindrically averaged intensity diffracted by a partially occupied

helix. It contains only the Fourier±Bessel structure factors Gnl of a

single repetitive group of atoms and the coef®cients bs, (5), which are

determined by the binding distribution (1) and de®ne the one-

dimensional interference function of the binding sites,

L�Z� �P
s

bs��Z ÿ s=Ud�: �8�

L(Z) is the transform of the auto-correlation function of the one-

dimensional distribution function

A�z� � 1

U

X
s

�s��zÿ sd�: �9�

In other terms, L(Z) is the intensity diffracted by a linear array of K

points with unit scattering amplitude which are distributed according

to (9) and (1). The interference function L(Z) is real; it has a period

1=d (i.e. bp � bp+U for any p); L(Z) is symmetric [i.e. L(Z) � L(ÿZ),

bp � bÿp for any p], and non-negative [L(Z) � 0, bp � 0 for any p]. It



can be readily shown that b0 � q2 and the integral of L(Z) over a

period 1=d is equal to q � K=U (i.e.
PUÿ1

s�0 bs � q).

3. Fully and partially occupied helices

For a fully occupied (i.e. a conventional) helix, K � U, q � 1, b0 � 1

and bs � 0 for all s 6� mU, where m is any integer. Hence the

expressions (4), or (6) and (7), reduce in this case to the classical

formula for the intensity, I
f

l �R�, diffracted by a discrete helix

(Franklin & Klug, 1955; Klug et al., 1958; Millane, 1991):

I
f
l �R� �

P
n2=
jGnl�R�j2; �10�

where the summation is over only those Fourier±Bessel terms that

satisfy the helix selection rule: n2 =, l � nT � mU (Cochran et al.,

1952). As b0 � q2, the expression (4) for the intensity diffracted by a

partially occupied helix can be rewritten as

Il � I
f

l q2 �P
n=2=
jGnl�R�j2blÿnT ; �11�

where summation in the second term is over all those Fourier±Bessel

terms Gnl that do not satisfy the helix selection rule, i.e. for all n and l

for which l 6� nT � mU for any integer m. The ®rst term in (11)

formulates the so-called square law of intensity. According to this law,

the intensity diffracted by a partially occupied helix is the intensity

diffracted by a fully occupied helix scaled with the square of its

average occupancy. As can be seen from (11), the intensity diffracted

by a partially occupied helix contains contributions from all Bessel

functions, not only those satisfying the helix selection rule. As bs � 0,

the layer-line intensity diffracted by a partially occupied helix, Il (R),

is higher than that predicted by the square law, q2I
f

l �R�.

A formula similar to (4), although with some misprints, was

obtained by Gu & Yu (1999), who, however, did not notice that the

`all or nothing' occupation (1) induces a regular deviation from the

square law of intensity.

4. Modulated helix

Instead of using the `all or nothing' discrete binding parameters (1),

Holmes et al. (1980) represented a partially occupied helix as a fully

occupied helix modulated with a one-dimensional continuous binding

probability function, Q(z), 0 � Q(z) � 1. They obtained the trans-

form F M of the modulated structure,

FM
l �

P
s

P
n

qsGnl�R� exp�in	�; �12�

where qs are the coef®cients of the Fourier series representing the

function Q(z). For Q(z) having period c, integers n, l and s in (12)

satisfy the selection rule (7). The cylindrically averaged intensity I M
l

that can be derived from transform (12) is

I M
l �R� �

P
n

P
s

jGnl�R�j2jqsj2 �13�

with the selection rule (7). Expression (13) is identical to (6) if bs �
|qs|

2 for any s. This takes place if the binding probability function Q(z)

coincides with the discrete distribution function A(z) de®ned by

(9) and (1), i.e. if Q(z) is essentially discrete. Otherwise, i.e. if the

probability function Q(z) has intermediate values between 0 and 1,

(13) underestimates the intensity I M
l �R� < Il(R) because in this casePUÿ1

s�0 jqsj2 <
PUÿ1

s�0 bs � q, where q is the average helix occupancy.

For an extreme example of a randomly partially modulated helix (this

applies only if r is large enough), the probability approach gives qs �
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Figure 1
(a) An actin ®lament (grey) partially decorated by myosin heads (dark grey). High-resolution structures of actin, myosin head and their complex were taken from Rayment,
Holden et al. (1993) and Rayment, Rypniewski et al. (1993). The actin binding pattern (closed circles) was obtained assuming that a myosin head binds the closest actin
monomer on one of six surrounding actin ®laments. The actin ®lament shown in (a) is decorated by the heads originating from three neighbouring myosin ®laments. A
myosin ®lament in skeletal muscle is assumed to be a three-strand 31 helix with a period of 42.9 nm. Actin is approximated by a 137 helix; d = 2.75 nm; c = 214.5 nm; r = 6, U =
78; q = 45=78. Except for the main term b0 = q2 = 0.333, the binding pattern has only one pronounced term of the interference function (8), b30 = 0.080. All other bs are
< 0.005. (b) The cylindrically averaged intensity of the ®rst actin layer line, I6, calculated using expression (6) with the selection rule (7), l = 42n� 78m � s (continuous line),
or with only the ®rst term of (11), i.e. the square law (dashed line); the intensity diffracted by actin itself is shown by the dotted line. The deviation from the square law for I6

mainly arises from the bÿ30Gÿ1,6 term of (6), proportional to Jÿ1.
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0 for all qs except q0 � q mU � q, where m is any integer. In this case,

I M
l is equal to the ®rst term of (11), i.e. obeys the square law and

neglects any contribution from the Bessel functions that do not satisfy

the helix selection rule.

5. Application to muscle diffraction

An obvious application of the theory presented here is muscle

diffraction where myosin heads bound to actin ®laments partially

decorate the actin helix and increase the intensities of the actin layer

lines (Huxley & Brown, 1967). It follows from (11) that the square

law that was used by Huxley & Kress (1985), Yagi (1996), Bershitsky

et al. (1997), Gu & Yu (1999), Kraft et al. (1999), Tsaturyan et al.

(1999) and Bordas et al. (1999) for the estimation of the number of

myosin heads bound to actin during muscle contraction is incorrect.

For example, for an actin helix that is periodically decorated by

bound myosin heads as shown in Fig. 1(a), the difference between the

®rst actin layer-line intensity calculated using expressions (6) and (7)

and that predicted by the square law is quite substantial (Fig. 1b). The

error in the estimation of the number of bound heads using the

square law depends on the binding pattern [(1) and (9)] and can be as

much as 70%.

This work was inspired by results of computer modelling of muscle

diffraction carried out in collaboration with Natalia Koubassova. I am

very grateful to her for help with the preparation of Fig. 1 and for

discussions, to Richard Tregear who turned my attention to the

problem, and to Pauline Bennett for comments on the manuscript.

Work was supported by grants from HHMI, INTAS and RFBR

References

Bershitsky, S. Y., Tsaturyan, A. K., Bershitskaya, O. N., Mashanov, G. I.,
Brown, P., Burns, R. & Ferenczi, M. A. (1997). Nature (London), 388,
186±190.

Bordas, J., Svensson, A., Rothery, M., Lowy, J., Diakun, G. P. & Boesecke, P.
(1999). Biophys. J. 77, 3197±3207.

Cochran, W., Crick, F. H. C. & Vand, V. (1952). Acta Cryst. 5, 581±586.
Franklin, R. E. & Klug, A. (1955). Acta Cryst. 8, 777±780.
Gu, J. & Yu, L. C. (1999). Acta Cryst. D55, 2022±2027.
Holmes, K. C., Tregear, R. T. & Barrington Leigh, J. (1980). Proc. R. Soc.

London Ser. B, 207, 13±33.
Huxley, H. E. & Brown, W. (1967). J. Mol. Biol. 30, 383±434.
Huxley, H. E. & Kress, M. (1985). J. Musc. Res. Cell Motil. 6, 153±161.
Klug, A., Crick, F. H. C. & Wyckoff, H. W. (1958). Acta Cryst. 11,

199±213.
Kraft, T., Brenner, B. & Yu, L. C. (1999). Biophys. J. 76, 1494±1513.
Millane, R. (1991). Acta Cryst. A47, 449±451.
Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes,

K. C. & Milligan, R. A. (1993). Science, 261, 50ÿ58.
Rayment, I., Rypniewski, W. R., Schmidt-BaÈse, K., Smith, R., Tomchick, D. R.,

Benning, M. M., Winkelmann, D. A., Wesenberg, G. & Holden, H. M.
(1993). Science, 261, 58ÿ65.

Tsaturyan, A. K., Bershitsky, S. Y., Burns, R. & Ferenczi, M. A. (1999).
Biophys. J. 77, 354±372.

Vainstein, B. K. (1963). Diffraction of X-rays by Chain Molecules. Moscow:
Nauka. (In Russian; English translation published by Elsevier, Amsterdam,
1966.)

Yagi, N. (1996). Acta Cryst. D52, 1169±1173.


